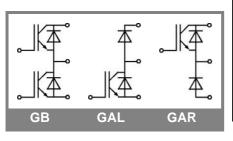


SEMITOP® 2

IGBT Module

SK30GB128 SK30GAL128 SK30GAR128


Preliminary Data

Features

- Compact design
- · One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB
- · High short circuit capability
- SPT= Soft Punch Through technology
- V_{ce,sat} with positive coefficient

Typical Applications*

- Switching (not for linear use)
- Inverter
- Switched mode power supplies
- UPS

Absolute Maximum Ratings $T_s = 25 ^{\circ}\text{C}$, unless otherwise specified						
Symbol	Conditions		Values	Units		
IGBT				,		
V_{CES}	T _j = 25 °C		1200	V		
I _C	T _j = 125 °C	T _s = 25 °C	35	Α		
		T _s = 80 °C	25	Α		
I _{CRM}	I _{CRM} = 2 x I _{Cnom}		50	Α		
V_{GES}			± 20	V		
t _{psc}	V_{CC} = 600 V; $V_{GE} \le 20$ V; $V_{CES} < 1200$ V	T _j = 125 °C	10	μs		
Inverse D	Diode					
I _F	T _j = 150 °C	$T_s = 25 ^{\circ}C$	37	Α		
		T _s = 80 °C	25	Α		
I _{FRM}	I _{FRM} = 2 x I _{Fnom}			Α		
I _{FSM}	t _p = 10 ms; half sine wave	T _j = 150 °C	350	Α		
Freewhee	eling Diode	-		•		
I _F	T _j = 150 °C	T_{case} = 25 °C	37	Α		
		T _{case} = 80 °C	25	Α		
I _{FRM}				Α		
I _{FSM}	t _p = 10 ms; half sine wave	T _j = 150 °C	350	Α		
Module		-		•		
I _{t(RMS)}				Α		
T _{vj}			-40 +150	°C		
T _{stg}			-40 +125	°C		
V _{isol}	AC, 1 min.		2500	V		

Characteristics $T_s =$		25 °C, unless otherwise specified				
Symbol	Conditions		min.	typ.	max.	Units
IGBT	•					
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_C = 1 \text{ mA}$		4,5	5,5	6,5	V
I _{CES}	V _{GE} = 0 V, V _{CE} = V _{CES}	T _j = 25 °C		0,1	0,1	mA
		T _j = 125 °C				mA
I _{GES}	V _{CE} = 0 V, V _{GE} = 20 V	T _j = 25 °C			200	nA
		T _j = 125 °C				nA
V _{CE0}		T _j = 25 °C		1,1		V
		T _j = 125 °C		1		V
r _{CE}	V _{GE} = 15 V	T _j = 25°C		36		mΩ
		T _j = 125°C		48		mΩ
V _{CE(sat)}	I _{Cnom} = 25 A, V _{GE} = 15 V		1,7	2	2,3	V
		$T_j = 125^{\circ}C_{chiplev.}$		2,2	3,7	V
C _{ies}				1,9		nF
C _{oes}	$V_{CE} = 25, V_{GE} = 0 V$	f = 1 MHz		0,16		nF
C _{res}				0,09		nF
t _{d(on)}				55		ns
t _r	R_{Gon} = 15 Ω	V _{CC} = 600V		26		ns
E _{on}	D = 15 O	I _C = 30A		2,8 284		mJ
$t_{ ext{d(off)}} \ t_{ ext{f}}$	$R_{Goff} = 15 \Omega$	T _j = 125 °C V _{GE} =±15V		284 40		ns ns
E _{off}		GE -104		2,19		mJ
R _{th(j-s)}	per IGBT	<u> </u>		_,	1	K/W

SEMITOP® 2

IGBT Module

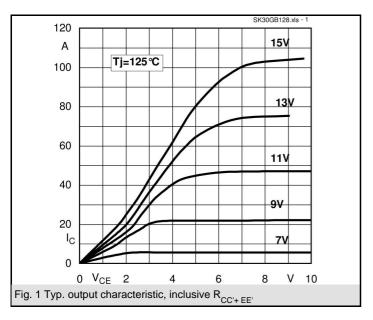
SK30GB128 SK30GAL128 SK30GAR128

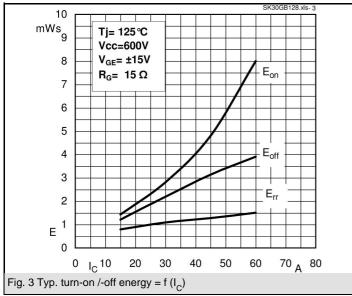
Preliminary Data

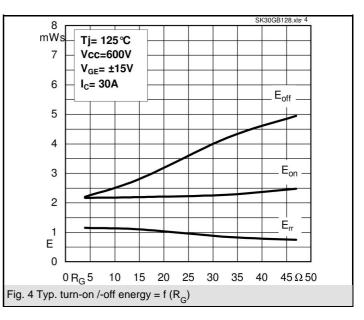
Features

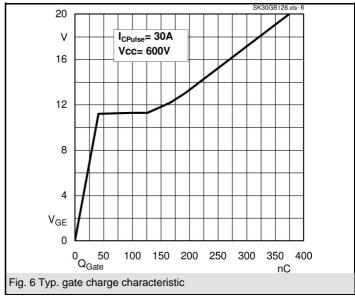
- Compact design
- · One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB
- · High short circuit capability
- SPT= Soft Punch Through technology
- V_{ce,sat} with positive coefficient

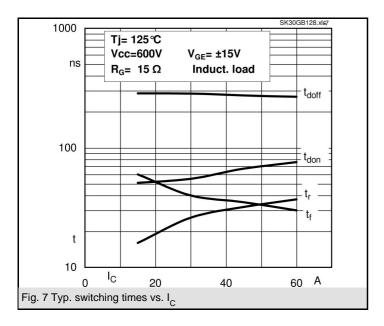

Typical Applications*

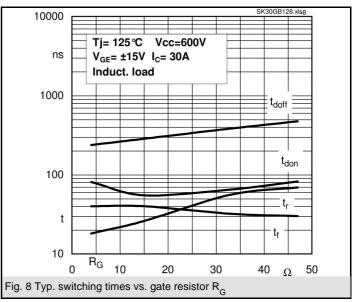

- Switching (not for linear use)
- Inverter
- Switched mode power supplies
- LID

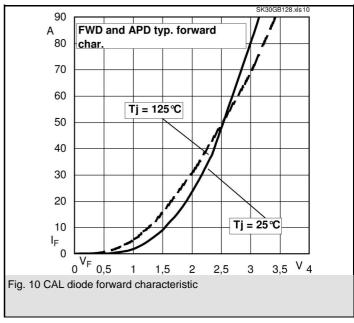

Characteristics								
Symbol	Conditions		min.	typ.	max.	Units		
Inverse Diode								
$V_F = V_{EC}$	$I_{Fnom} = 25 \text{ A}; V_{GE} = 0 \text{ V}$			2	2,5	V		
		$T_j = 125 ^{\circ}C_{\text{chiplev.}}$		1,8	2,3	V		
V_{F0}		T _j = 125 °C		1	1,2	V		
r _F		T _j = 125 °C		32	44	$m\Omega$		
I _{RRM}	I _F = 22 A	T _j = 125 °C		25		Α		
Q_{rr}	di/dt = -500 A/µs			4,5		μC		
E _{rr}	V _{CC} = 600V			1		mJ		
$R_{th(j-s)D}$	per diode				1,2	K/W		
Freewheeling Diode								
$V_F = V_{EC}$	I_{Fnom} = 25 A; V_{GE} = 0 V	$T_j = 25 ^{\circ}C_{chiplev.}$		2	2,5	V		
		$T_j = 125 ^{\circ}C_{chiplev.}$		1,8	2,3	V		
V_{F0}		T _j = 125 °C		1	1,2	V		
r _F		T _j = 125 °C		32	44	V		
I _{RRM}	I _F = 22 A	T _j = 125 °C		253		Α		
Q_{rr}	di/dt = -500 A/µs			4,5		μC		
E _{rr}	V _R =600V			1		mJ		
	per diode				1,2	K/W		
M _s	to heat sink M1				2	Nm		
w				19		g		

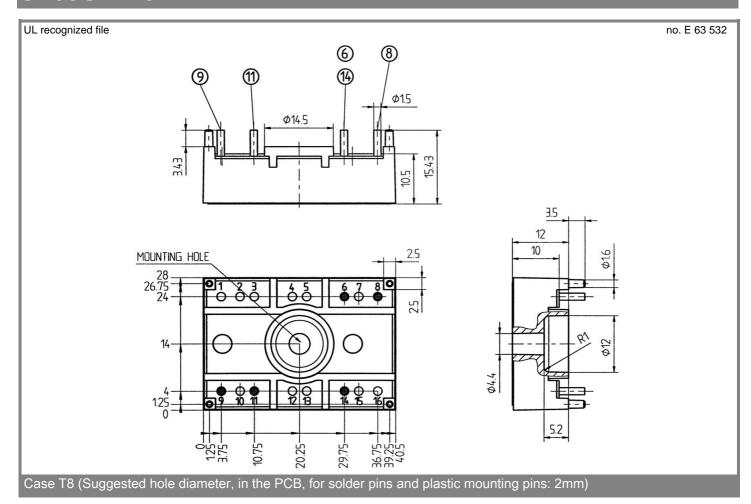

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

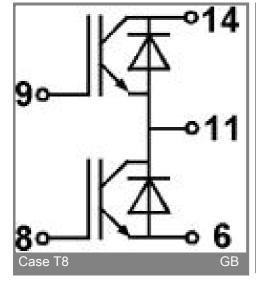

* The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.










SK30GB128

