

SEMITRANS<sup>®</sup> 3

**Trench IGBT Modules** 

#### SKM 200GB126D SKM 200GAL126D

#### Features

- Trench = Trenchgate technology
- V<sub>CE(sat)</sub> with positive temperature coefficient
- High short circuit capability, self limiting to 6 x I<sub>C</sub>

#### **Typical Applications\***

- Electronic welders
- AC inverter drives
- UPS

| Absolute Maximum Ratings T <sub>case</sub> = 25°C, unless otherwise specifi |                                                       |                         |            |       |  |  |
|-----------------------------------------------------------------------------|-------------------------------------------------------|-------------------------|------------|-------|--|--|
| Symbol                                                                      | Conditions                                            |                         | Values     | Units |  |  |
| IGBT                                                                        |                                                       |                         |            |       |  |  |
| V <sub>CES</sub>                                                            | T <sub>j</sub> = 25 °C<br>T <sub>j</sub> = 150 °C     |                         | 1200       | V     |  |  |
| I <sub>C</sub>                                                              | T <sub>j</sub> = 150 °C                               | T <sub>c</sub> = 25 °C  | 260        | А     |  |  |
|                                                                             |                                                       | T <sub>c</sub> = 80 °C  | 190        | А     |  |  |
| I <sub>CRM</sub>                                                            | I <sub>CRM</sub> =2xI <sub>Cnom</sub>                 |                         | 300        | А     |  |  |
| $V_{GES}$                                                                   |                                                       |                         | ± 20       | V     |  |  |
| t <sub>psc</sub>                                                            | $V_{CC}$ = 600 V; $V_{GE} \le 20$ V;<br>VCES < 1200 V | T <sub>j</sub> = 125 °C | 10         | μs    |  |  |
| Inverse Diode                                                               |                                                       |                         |            |       |  |  |
| I <sub>F</sub>                                                              | T <sub>j</sub> = 150 °C                               | T <sub>c</sub> = 25 °C  | 200        | А     |  |  |
|                                                                             |                                                       | T <sub>c</sub> = 80 °C  | 140        | A     |  |  |
| I <sub>FRM</sub>                                                            | I <sub>FRM</sub> =2xI <sub>Fnom</sub>                 |                         | 300        | А     |  |  |
| I <sub>FSM</sub>                                                            | t <sub>p</sub> = 10 ms; sin.                          | T <sub>j</sub> = 150 °C | 1100       | А     |  |  |
| Freewhe                                                                     | Freewheeling Diode                                    |                         |            |       |  |  |
| I <sub>F</sub>                                                              | T <sub>j</sub> = 150 °C                               | T <sub>c</sub> = 25 °C  | 200        | А     |  |  |
|                                                                             |                                                       | T <sub>c</sub> = 80 °C  | 140        | А     |  |  |
| I <sub>FRM</sub>                                                            | I <sub>FRM</sub> =2xI <sub>Fnom</sub>                 |                         | 300        | А     |  |  |
| I <sub>FSM</sub>                                                            | t <sub>p</sub> = 10 ms; sin.                          | T <sub>j</sub> = 150 °C | 1100       | А     |  |  |
| Module                                                                      |                                                       |                         | •          |       |  |  |
| I <sub>t(RMS)</sub>                                                         |                                                       |                         | 500        | А     |  |  |
| Τ <sub>vj</sub>                                                             |                                                       |                         | - 40 + 150 | °C    |  |  |
| T <sub>stg</sub>                                                            |                                                       |                         | - 40 + 125 | °C    |  |  |
| V <sub>isol</sub>                                                           | AC, 1 min.                                            |                         | 4000       | V     |  |  |

| Characte             | 25°C, unless otherwise specified                  |                                            |      |      |      |       |
|----------------------|---------------------------------------------------|--------------------------------------------|------|------|------|-------|
| Symbol               | Conditions                                        |                                            | min. | typ. | max. | Units |
| IGBT                 |                                                   |                                            |      |      |      |       |
| V <sub>GE(th)</sub>  | $V_{GE} = V_{CE}, I_C = 6 \text{ mA}$             |                                            | 5    | 5,8  | 6,5  | V     |
| I <sub>CES</sub>     | $V_{GE}$ = 0 V, $V_{CE}$ = $V_{CES}$              | T <sub>j</sub> = 25 °C                     |      | 0,1  | 0,3  | mA    |
|                      |                                                   | T <sub>j</sub> = 125 °C                    |      |      |      | mA    |
| V <sub>CE0</sub>     |                                                   | T <sub>j</sub> = 25 °C                     |      | 1    | 1,2  | V     |
|                      |                                                   | T <sub>j</sub> = 125 °C                    |      | 0,9  | 1,1  | V     |
| r <sub>CE</sub>      | V <sub>GE</sub> = 15 V                            | T <sub>j</sub> = 25°C                      |      | 4,7  | 6,3  | mΩ    |
|                      |                                                   | T <sub>j</sub> = 125°C                     |      | 7,3  | 9    | mΩ    |
| V <sub>CE(sat)</sub> | I <sub>Cnom</sub> = 150 A, V <sub>GE</sub> = 15 V | T <sub>j</sub> = 25°C <sub>chiplev.</sub>  |      | 1,7  | 2,15 | V     |
|                      |                                                   | T <sub>j</sub> = 125°C <sub>chiplev.</sub> |      | 2    | 2,45 | V     |
| C <sub>ies</sub>     |                                                   |                                            |      | 10,8 |      | nF    |
| C <sub>oes</sub>     | $V_{CE}$ = 25, $V_{GE}$ = 0 V                     | f = 1 MHz                                  |      | 0,9  |      | nF    |
| C <sub>res</sub>     |                                                   |                                            |      | 0,9  |      | nF    |
| Q <sub>G</sub>       | V <sub>GE</sub> = -8V - +20V                      |                                            |      | 1530 |      | nC    |
| R <sub>Gint</sub>    | T <sub>j</sub> = 25 °C                            |                                            |      | 5    |      | Ω     |
| t <sub>d(on)</sub>   |                                                   |                                            |      | 260  |      | ns    |
| t,                   | R <sub>Gon</sub> = 1,5 Ω                          | V <sub>CC</sub> = 600V                     |      | 40   |      | ns    |
| Ė <sub>on</sub>      |                                                   | I <sub>C</sub> = 150A                      |      | 18   |      | mJ    |
| t <sub>d(off)</sub>  | R <sub>Goff</sub> = 1,5 Ω                         | T <sub>j</sub> = 125 °C                    |      | 540  |      | ns    |
| t <sub>f</sub>       |                                                   | $V_{GE} = \pm 15V$                         |      | 110  |      | ns    |
| E <sub>off</sub>     |                                                   |                                            |      |      |      | mJ    |
| R <sub>th(j-c)</sub> | per IGBT                                          |                                            |      |      | 0,13 | K/W   |

| GB | GAL |  |
|----|-----|--|



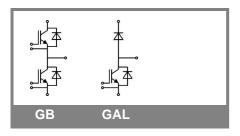
SEMITRANS<sup>®</sup> 3

### Trench IGBT Modules

#### SKM 200GB126D SKM 200GAL126D

#### Features

- Trench = Trenchgate technology
- V<sub>CE(sat)</sub> with positive temperature coefficient
- High short circuit capability, self limiting to 6 x I<sub>C</sub>


#### **Typical Applications\***

- Electronic welders
- AC inverter drives
- UPS

| Characte               | ristics                                          |                                                            |      |      |       |       |
|------------------------|--------------------------------------------------|------------------------------------------------------------|------|------|-------|-------|
| Symbol                 | Conditions                                       |                                                            | min. | typ. | max.  | Units |
| Inverse o              |                                                  |                                                            |      |      |       |       |
| $V_F = V_{EC}$         | $I_{Fnom}$ = 150 A; $V_{GE}$ = 0 V               | T <sub>j</sub> = 25 °C <sub>chiplev.</sub>                 |      | 1,6  | 1,8   | V     |
|                        |                                                  | $T_j = 125 \ ^{\circ}C_{chiplev.}$                         |      | 1,6  | 1,8   | V     |
| V <sub>F0</sub>        |                                                  | T <sub>j</sub> = 25 °C                                     |      | 1    | 1,1   | V     |
|                        |                                                  | T <sub>j</sub> = 125 °C                                    |      | 0,8  | 0,9   | V     |
| r <sub>F</sub>         |                                                  | T <sub>j</sub> = 25 °C                                     |      | 4    | 4,7   | mΩ    |
|                        |                                                  | T <sub>j</sub> = 125 °C                                    |      | 5,3  | 6     | mΩ    |
| I <sub>RRM</sub>       | I <sub>F</sub> = 150 A                           | T <sub>j</sub> = 125 °C                                    |      | 240  |       | А     |
| Q <sub>rr</sub>        | di/dt = 5000 A/µs                                |                                                            |      | 42   |       | μC    |
| E <sub>rr</sub>        | V <sub>GE</sub> = -15 V; V <sub>CC</sub> = 600 V |                                                            |      |      |       | mJ    |
| R <sub>th(j-c)D</sub>  | per diode                                        |                                                            |      |      | 0,3   | K/W   |
| FWD                    |                                                  |                                                            |      |      |       |       |
| $V_F = V_{EC}$         | I <sub>Fnom</sub> = 150 A; V <sub>GE</sub> = 0 V | T <sub>j</sub> = 25 °C <sub>chiplev.</sub>                 |      | 1,6  | 1,8   | V     |
|                        |                                                  | $T_j = 125 \ ^\circ C_{chiplev.}$<br>$T_j = 25 \ ^\circ C$ |      | 1,6  | 1,8   | V     |
| V <sub>F0</sub>        |                                                  |                                                            |      | 1    | 1,1   | V     |
|                        |                                                  | T <sub>j</sub> = 125 °C                                    |      | 0,8  | 0,9   | V     |
| r <sub>F</sub>         |                                                  | T <sub>j</sub> = 25 °C                                     |      | 4    | 4,7   | V     |
|                        |                                                  | T <sub>j</sub> = 125 °C                                    |      | 5,3  | 6     | V     |
| I <sub>RRM</sub>       | I <sub>F</sub> = 150 A                           | T <sub>j</sub> = 125 °C                                    |      | 240  |       | А     |
| Q <sub>rr</sub>        | di/dt = 5000 A/µs                                |                                                            |      | 42   |       | μC    |
| E <sub>rr</sub>        | V <sub>GE</sub> = -15 V; V <sub>CC</sub> = 600 V |                                                            |      |      |       | mJ    |
| R <sub>th(j-c)FD</sub> | per diode                                        |                                                            |      |      | 0,3   | K/W   |
| Module                 |                                                  |                                                            |      |      |       |       |
| L <sub>CE</sub>        |                                                  |                                                            |      | 15   | 20    | nH    |
| R <sub>CC'+EE'</sub>   | res., terminal-chip                              | T <sub>case</sub> = 25 °C                                  |      | 0,35 |       | mΩ    |
|                        |                                                  | T <sub>case</sub> = 125 °C                                 |      | 0,5  |       | mΩ    |
| R <sub>th(c-s)</sub>   | per module                                       |                                                            |      |      | 0,038 | K/W   |
| M <sub>s</sub>         | to heat sink M6                                  |                                                            | 3    |      | 5     | Nm    |
| M <sub>t</sub>         | to terminals M5                                  |                                                            | 2,5  |      | 5     | Nm    |
| w                      |                                                  |                                                            |      |      | 325   | g     |

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

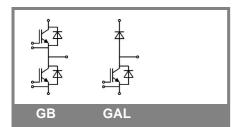
\* The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.



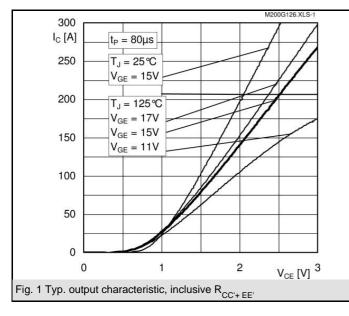


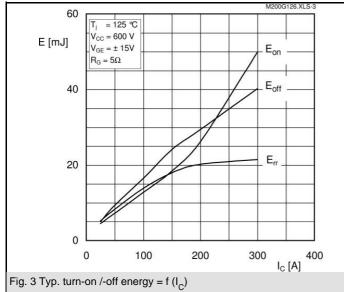
**Trench IGBT Modules** 

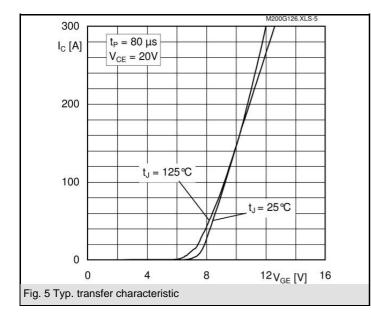
|      | Z <sub>th</sub><br>Symbol   | Conditions | Values | Units |
|------|-----------------------------|------------|--------|-------|
| r I- | Z<br><sub>Ri</sub> th(j-c)l |            |        |       |
| B    | R <sub>i</sub>              | i = 1      | 95     | mk/W  |
|      | R <sub>i</sub>              | i = 2      | 27     | mk/W  |
|      | R <sub>i</sub>              | i = 3      | 6,7    | mk/W  |
|      | R <sub>i</sub>              | i = 4      | 1,3    | mk/W  |
|      | tau <sub>i</sub>            | i = 1      | 0,0744 | s     |
|      | tau <sub>i</sub>            | i = 2      | 0,0087 | s     |
|      | tau <sub>i</sub>            | i = 3      | 0,002  | s     |
|      | tau <sub>i</sub>            | i = 4      | 0,0001 | S     |
|      | Z<br><sub>Ri</sub> th(j-c)D |            |        |       |
|      | R <sub>i</sub>              | i = 1      | 200    | mk/W  |
|      | R <sub>i</sub>              | i = 2      | 80     | mk/W  |
|      | R <sub>i</sub>              | i = 3      | 17     | mk/W  |
|      | R <sub>i</sub>              | i = 4      | 3      | mk/W  |
|      | tau <sub>i</sub>            | i = 1      | 0,0536 | S     |
|      | tau <sub>i</sub>            | i = 2      | 0,0056 | s     |
|      | tau <sub>i</sub>            | i = 3      | 0,09   | S     |
|      | tau <sub>i</sub>            | i = 4      | 0,0002 | s     |

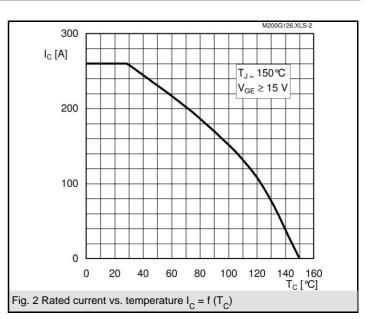

#### Features

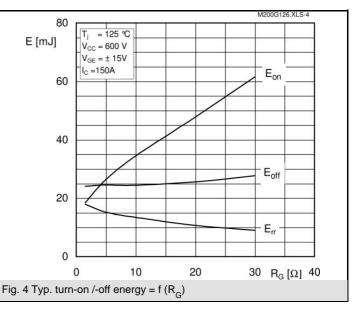
SKM 200GB126D SKM 200GAL126D


- Trench = Trenchgate technology
- V<sub>CE(sat)</sub> with positive temperature coefficient
- High short circuit capability, self limiting to 6 x I<sub>C</sub>


#### **Typical Applications\***


- Electronic welders
- AC inverter drives
- UPS





#### © by SEMIKRON

